
Optimizing Applications on Blue Waters

NCSA Science and Engineering Applications Support
Robert Brunner

December 3, 2013

Y

X

Z	

HT
3 HT

3

Node	
 Characteris1cs	

Number	
 of	
 Cores	
 16	
 Core	
 modules	

(2	
 AMD	
 6276	
 Interlagos	

processors	
 @2.3	
 GHz)	

Peak	
 Performance	
 313	
 Gflops/sec	

Memory	
 Size	
 4	
 GB	
 per	
 core-­‐mod	

64	
 GB	
 per	
 node	

Memory	
 Bandwidth
(Peak)	

102.4	
 GB/sec	

Cray XE6 Blade and Node

 2 CPU Arcitecture

•  Each processor die is
composed of 4 core modules

•  The 4 core modules share a
memory controller and 8 MB
L3 data cache on one die

•  Two die are packaged on a
multi-chip module to form a
G34-socket Interlagos
processor

•  Package contains
•  8 core modules
•  16 MB L3 Cache
•  4 DDR3 1600 memory

channels

AMD 6276 Interlagos Processor

3

Shared L3 C
ache

NB/HT Links Memory
Controller

Shared L3 C
ache

NB/HT Links Memory
Controller

CPU Arcitecture

Interlagos

4 CPU Architecture

Shared L3 C
ache

NB/HT Links Memory Controller

•  Four Core Modules per die
•  Two Integer cores and one

FP core per Core Module
•  OS treats each Interlagos as

16 cores (i.e. 32 per XE6
node)

•  Each die shares L3 cache

1	
 of	
 2	
 dies	

Compiler Options - Topics

•  Available (Supported) Compilers
•  Where to Start
•  Compiler Choices – Relative Strength
•  Compiler Options focused on

•  Optimization
•  Debugging

5 Compiler Optimization

Available Compilers

•  Cray Compilers (Cray Compiling Environment (CCE))
•  Provided additonal support for Fortran 2003, Co-arrays, UPC,

PGAS
•  GNU Compiler Collection (GCC)
•  Portland Group Inc (PGI) Compilers
•  All provide Fortran, C, C++, OpenMP support
•  UPC, PGAS, (limited) OpenACC support (Cray, PGI)
•  So which compiler do I choose?

•  Experiment with various compilers
•  Work with your BW POC
•  Mixing libraries created by different compilers may cause issues

6 Compiler Optimization

Where to Start

•  Unless you have a very good reason, always use compiler
wrappers
•  “module load PrgEnv-[cray,gnu,pgi]”
•  Compiler wrappers: ftn, cc, CC
•  Additional libraries are automatically linked in
•  Optimization targets automatically set

•  For most applications, using default settings work very
well

•  The OpenMP threaded BLAS/LAPACK libraries are used
•  The serial version is used if “OMP_NUM_THREADS” is not

set or set to 1

7 Compiler Optimization

Use the Best Compiler

•  The best compiler may not be the same for every
application.

•  Work with BW staff to compare compilers

8 Compiler Optimization

Compiler Choices – Relative Strength
•  CCE – Outstanding Fortran, Very good C and okay C++

•  Very good vectorization
•  Very good Fortran language support; only real choice for

coarrays
•  C support is very good, with UPC support
•  Very good scalar optimization and automatic parallelization
•  Clean implementation of OpenMP 3.0 with tasks
•  Cleanest integration with other Cray tools (Performance tools,

debuggers, upcoming productivity tools)
•  No inline assembly support
•  Excellent support from Cray (bugs, issues, performance etc)

9 Compiler Optimization

Compiler Choices – Relative Strength
•  PGI – Very good Fortran, okay C and C++

•  Good vectorization
•  Good functional correctness with optimization

enabled
•  Good manual and automatic prefetch capabilities
•  Company focused on HPC market
•  Excellent working relationship with Cray, good bug

responsiveness

10 Compiler Optimization

Compiler Choices – Relative Strength
•  GNU – so-so Fortran, outstanding C and C++ (If

you ignore vectorization)
•  Obviously, the best gcc compatibility
•  Scalable optimizer was recently rewritten and is

very good
•  Vectiorization capabilities focus mostly on inline

assembly
•  Few releases have been incompatible with each

other and require recompilation of modules (4.3,
4.4, 4.5)

11 Compiler Optimization

Recommended CCE Compilation Options
•  Use default optimization levels

•  It’s the equivalent of most other compilers –O3 or –fast
•  Use –O3, fp3 (or –O3 –hfp3 or some variation)

•  -O3 gives slightly more than –O2
•  -hfp3 gives a lot more floating point optimizations, esp 32 bit

•  If an application is intolerant of floating point reassociation, try lower
hfp number, try hfp1 first, only hfp0 if absolutely necessary

•  Might be needed for tests that require strict IEEE conformance
•  Or applications that have validated results from diffferent compiler

•  Do not suggest using -Oipa5, -Oaggress and so on; higher
numbers are not always correlated with better performance

•  Compiler feedback : -rm (fortran), -hlist=m (C)
•  If don’t want OpenMP : -xomp or –Othread0 or –hnoomp
•  Manpages : crayftn, craycc, crayCC

12 Compiler Optimization

Loopmark : Compiler Feedback (CCE)
•  Compiler can generate an filename.lst file
•  Contains annotated listing of your source code with letter indicating

important optimizations
•  Loopmark legend

13 Compiler Optimization

Primary Loop Type
---------- ------- ------
A - Pattern matched

C – Collapsed
D – Deleted
E – Cloned
G – Accelerated
I - Inlined
M - Multithreaded
V – Vectorized

Modifiers

a - atomic memory operation
b – blocked
c - conditional and/or computed

f – fused
g – partitioned
i – interchanged
m – partitioned
n - non-blocking remote transfer
p – partial
r – unrolled
s – shortloop
w - unwound

Starting Point for PGI Compilers
•  Suggested Option : -fast
•  Interprocedural analysis allows the compiler to perform

whole program optimizations : –Mipa=fast(,safe)
•  If you can be flexible with precision, also try –Mfprelaxed
•  Option –Msmartalloc, calls the subroutine mallopt in the

main routine, can have a dramatic impact on the
performance of program that uses dynamic allocation of
memory

•  Compiler feedback : -Minfo=all, -Mneginfo
•  Manpages : pgf90, pgcc, pgCC

14 Compiler Optimization

PGI Compiler Flags

•  -default64 : Fortran driver option for –i8 and –r8
•  -i8, -r8 : Treats INTEGER and REAL variables in

Fortran as 8 bytes (use ftn –default64 option to
link the right libraries

•  -byteswapio : Reads big endian files in fortran
•  -Mnomain : Uses ftn driver to link programs with

the main program (written in C or C++) and one
or more subroutines (written in fortran)

15 Compiler Optimization

PGI Compiler Flags
•  It is possible to disable optimizations included with –fast,

for example –fast –Mnolre enables –fast and then
disables loop redundant optimizations

•  -Mconcur, -mprof=mpi, -Mmpi and –Mscalapack are no
more supported

•  Fortran interfaces can be called from C program by
inserting an underscore to the respective name

•  Pass argument by reference rather than by value
•  For example to call dgetrf()
•  Dgetrf_(&uplo, &M, &n, ……);
•  To debug an optimized code, the –opt flag will insert

debugging information without disabling optimizations
16 Compiler Optimization

PGI Compiler Flags
•  Some compiler options mat affect both performance and

accuracy
•  Lower accuracy is often higher performance, but it also

able to enforce accuracy
•  -Kieee : all floating point (FP) math strictly conforms to

IEEE , off by default
•  -Ktrap : Turns processor trapping of FP exceptions
•  -Mdaz : Treat all denormalized numbers as zeros
•  Mflushz : Set SSE to flush-to-zero (on with –fast)
•  -Mfprelaxed : allow to use relaxed (reduced) precision to

speed up some floating point optimizations
•  Some compilers turn this on by default, PGI chooses to favor

accuracy to speed, by default
17 Compiler Optimization

Starting Point for GNU Compilers
•  -O3 –ffast-math –funroll-loops
•  Compiler feedback : -ftree-vectorizer-verbose=2
•  Manpages : gfortran, gcc, g++

18 Compiler Optimization

Numerical Libraries Overview

•  Many commonly-used packages are available on
Blue Waters

•  Typically can link with most or all combinations of
compiler, language, and parallel programming model

•  Use the “module” command to select a particular
version

•  Will try to accommodate special installation requests
(can’t install “Everything under the Sun” due to
scalibility and other considerations)

19 Performance Libraries

Cray Scientific Library (libsci)

•  Contains optimized versions of several popular
scientific software routines

•  Available by default; can change versions with
“module avail” and “module load
xt‑libsci[/version]”
•  BLAS, BLACS
•  LAPACK, ScaLAPACK
•  FFT, FFTW

•  Unique to Cray (affects portability)
•  CRAFFT, CASE, IRT

20 Performance Libraries

PETSc (Argonne National Laboratory)
•  Programmable, Extensible Toolkit for Scientific

Computing
•  Widely-used collection of many different types of linear

and non-linear solvers
•  Actively under development; very responsive team
•  Can also interface with numerous optional external

packages (e.g., SLEPC, HYPRE, ParMETIS, …)
•  Optimized version installed by Cray, along with many

external packages
•  Use “module load petsc[/version]”

21 Performance Libraries

Other Numerical Libraries

•  ACML (AMD Core Math Library)
•  BLAS, LAPACK, FFT, Random Number Generators

•  Trilinos (from Sandia National Laboratories)
•  Somewhat similar to PETSc, interfaces to a large

collection of preconditioners, solvers, and other
computational tools

•  GSL (GNU Scientific Library)
•  Collection of numerous computational solvers and tools for

C and C++ programs
•  All available using “module load”

22 Performance Libraries

Optimization options
•  Hybrid programming model (MPI+OpenMP, et al) is usually better

•  Try 1, 2, 4, 16, 32 tasks per node

 For 1024 nodes:

 32 tasks+threads/node:

 aprun –n 4096 –N 4 –d 8 ./myprog

 16 tasks+threads/node:

 aprun –n 4096 –N 4 –d 4 \

 –cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30 \
 ./myprog

•  Try using –r 1 to reserve a core for the OS

 aprun –n 4096 –N 4 –d 7 –r 1 \
 –cc 0-6:8-14:16-22:24-30 ./myprog

•  Test different compilers, flags

•  Use accelerators

23 Presentation Title

This Talk

Applica/on…	

I/O	
 Library	

HDF5	

PnetCDF	

Adios	

I/O	

Middleware	

MPI-­‐IO	

Damaris	

Parallel	
 File	

System	
 Lustre	

Scien/st…	

U/li/es	

Darshan	
 Blue	
 Waters	

IOBUF	

Common I/O Usage

•  Checkpoint files
•  Write-close
•  Size varies
•  Must be written to disk

•  Log / history / state files
•  Simple appends
•  Small writes (~kb - ~MB)
•  Can be buffered

•  Write-read not very common

•  Op/mize	
 for	

write	

•  Synchronous	

write	

•  Op/mize	
 for	
 write	

•  Asynchronous	

write	

•  Explicit	
 buffer	

management	
 or	

•  Use	
 a	
 library	

Available File Systems

•  home
•  2.2 PB
•  1TB quota

•  project
•  2.2 PB
•  3TB quota

•  scratch
•  22 PB
•  500 TB quota

•  Three separate file systems
•  Three separate metadata servers
•  User operations in home won’t

interfere with application IO
•  Project space controlled by the PI

Application I/O: Big Picture Considerations

•  Maximize both client I/O and communication
bandwidth (without breaking things)

•  Minimize management of an unnecessarily large
number of files

•  Minimize costly post-processing
•  Exploit parallelism in the file system
•  Maintain portability

Large Scale I/O in Practice
•  Serial I/O is limited by both the I/O bandwidth of a single

process as well as that of a single OST
•  Two ways to increase bandwidth:

0	
 1	
 2	
 3	
 4	

File	

0	

File	

1	

File	

2	

File	

3	

File	

4	

File	

File-Per-Process
•  Each process performs I/O on its own file

•  Advantages
•  Straightforward implementation
•  Typically leads to reasonable bandwidth quickly

•  Disadvantages
•  Limited by single process
•  Difficulty in managing a large number of files
•  Likely requires post processing to acquire useful data
•  Can be taxing on the file system metadata and ruin everybody’s day

0	

File	

1	

File	

2	

File	

3	

File	

4	

File	

Shared-File
•  There is one, large file shared among all processors which

access the file concurrently

•  Advantages
•  Results in easily managed data that is useful with minimal

preprocessing
•  Disadvantages

•  Likely slower than file-per-process, if not used properly
•  Additional (one-time!) programing investment

0	
 1	
 2	
 3	
 4	

File	

Lustre File System: Striping

•  File striping: single files are distributed across a
series of OSTs
•  File size can grow to the aggregate size of available

OSTs (rather than a single disk)
•  Accessing multiple OSTs concurrently increases I/O

bandwidth

Logical
Physical

Performance Impact: Configuring File Striping
•  lfs is the Lustre utility for viewing/setting file striping info

•  Stripe count – the number of OSTs across which the file can be striped
•  Stripe size – the size of the blocks that a file will be broken into
•  Stripe offset – the ID of an OST for Lustre to start with, when deciding

which OSTs a file will be striped across
•  Configurations should focus on stripe count/size
•  Blue Waters defaults:
 $> touch test
 $> lfs getstripe test
 test
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_stripe_offset: 708
 obdidx objid objid group
 708 2161316 0x20faa4 0

Setting Striping Patterns
$> lfs setstripe -c 5 -s 32m test
$> lfs getstripe test
test
lmm_stripe_count: 5
lmm_stripe_size: 33554432
lmm_stripe_offset: 1259
 obdidx objid objid group
 1259 2162557 0x20ff7d 0
 1403 2165796 0x210c24 0
 955 2163063 0x210177 0
 1139 2161496 0x20fb58 0
 699 2161171 0x20fa13 0

•  Note: a file’s striping pattern is permanent, and set upon creation
•  lfs setstripe creates a new, 0 byte file
•  The striping pattern can be changed for a directory; every new file or directory

created within will inherit its striping pattern
•  Simple API available for configuring striping – portable to other Lustre systems

Striping Case Study

•  Reading 1 TB input file using 2048 cores

•  Code is now CPU bound instead of I/O bound
•  Optimization “effort”: lfs setstripe –c 64

Func1on	
 Stripe	
 Count	
 =	
 1	
 Stripe	
 Count	
 =	
 64	
 Improvement	

Total	
 4551.620s	
 268.209s	
 94.1%	

loadKernel	
 4296.118s	
 85.331s	
 98.0%	

loadDamp	
 33.767s	
 6.144s	
 81.8%	

loadDamp_bycol	
 30.085s	
 5.712s	
 81.0%	

Striping, and You
•  When to use the default stripe count of 1

•  Serial I/O or small files
•  Inefficient use of bandwidth + overhead of using multiple OSTs

will degrade performance
•  File-per-process I/O Pattern

•  Each core interacting with a single OST reduces network costs
of hitting OSTs (which can eat your lunch at large scales)

•  Stripe size is unlikely to vary performance unless
unreasonably small/large
•  Err on the side of small

•  This helps keep stripes aligned, or within single OSTs
•  Can lessen OST traffic

•  Default stripe size should be adequate

•  Large shared files:
•  Processes ideally access exclusive file regions
•  Stripe size

•  Application dependent
•  Should maximize stripe alignment (localize a process to an OST to reduce

contention and connection overhead)
•  Stripe count

•  Should equal the number of processes performing I/O to maximize I/O
bandwidth

•  Blue Waters contains 1440 OSTs, the maximum possible for file stripe count is
currently 160 (likely to increase soon pending a software update)

 $> lfs osts
 OBDS
 0: snx11001-OST0000_UUID ACTIVE
 1: snx11001-OST0001_UUID ACTIVE
 ……
1438: snx11003-OST059e_UUID ACTIVE
1439: snx11003-OST059f_UUID ACTIVE

And the Winner is… Neither?
•  Both patterns increase bandwidth through the addition of I/O

processes
•  There are a limited number of OSTs to stripe a file across
•  The likelihood of OST contention grows with the ratio of I/O

processes to OSTs
•  Eventually, the benefit of another I/O process is offset by added

OST traffic
•  Both routinely use all processes to perform I/O

•  A small subset of a node’s cores can consume a node’s I/O
bandwidth

•  This is an inefficient use of resources
•  The answer? It depends… but,

•  Think aggregation, a la file-per-node

I/O Delegates
0	
 1	
 2	
 3	

File	

4	

5	
 6	
 7	
 8	

File	

9	

•  Advantages
•  More control - customize per job size

•  Ex: One file per node, one file per OST
•  Disadvantages

•  Additional (one-time!) programing investment

I/O MIDDLEWARE
MPI-IO & IOBUF

Why use I/O Middleware?

•  Derived data types
•  Easy to work with shared files
•  Derived types + shared files

•  Data is now a series of objects, rather than a
number of files

•  On restart from checkpoint, the number of
processors need not match the number of files

•  Easy read-write of non-contiguous data
•  Optimizations possible with little effort

I/O Middleware: MPI-IO
•  MPI standard’s implementation of collective I/O (shared-file)

•  A file is opened by a group of processes, partitioned among them, and I/O
calls are collective among all processes in the group

•  Files are composed of native MPI data types
•  Non-collective I/O is also possible

•  Uses collective buffering to consolidate I/O requests
•  All data is transferred to a subset of processes and aggregated
•  Use MPICH_MPIIO_CB_ALIGN=2 to enable Cray’s collective buffering

algorithm
•  automatic Lustre stripes alignment & minimize lock contention
•  May not be beneficial when writing small data segments
•  Verified to deliver 25% improvement on BlueWaters for a 1000 rank job

•  Use MPICH_MPIIO_XSTATS [0, 1, 2] to obtain MPI-IO statistics
•  I/O optimizations in high level libraries are often implemented here –

be sure any monkeying is careful monkeying

Collective Buffering (1)

•  Exchange metadata

Collective Buffering (2)

•  Copy user/application data

Collective Buffering (3)

•  Aggregators write to disk

•  Hints are specified in application code [MPI_Info_set()] or
as environment variables (MPICH_MPIIO_HINTS)

•  Collective buffering hints

Tuning MPI-IO: CB Hints

Hint	
 Descrip1on	
 Default	

cb_buffer_size! set	
 the	
 maximum	
 size	
 of	
 a	
 single	
 I/O	
 opera/on	
 	
 4MB	

cb_nodes! set	
 maximum	
 number	
 of	
 aggregators	
 stripe	
 count	
 of	
 file	

romio_cb_read	

romio_cb_write	

enable	
 or	
 disable	
 collec/ve	
 buffering	
 automa/c	

romio_no_indep_rw	
 •  if	
 true,	
 MPI-­‐IO	
 knows	
 all	
 I/O	
 is	
 collec/ve	

•  Only	
 aggregators	
 will	
 open	
 files	

false!

cb_config_list	
 a	
 list	
 of	
 independent	
 configura/ons	
 for	
 nodes	
 N/A	

striping_factor	
 Specifies	
 the	
 number	
 of	
 Lustre	
 stripes	
 File	
 system	

striping_unit	
 Specifies	
 the	
 size	
 of	
 the	
 Lustre	
 stripe	
 File	
 system	

Other Useful Hints

Hint	
 Descrip1on	
 Default	

romio_lustre_co_ratio!
tell	
 MPI-­‐IO	
 the	
 maximum	
 number	
 of	

processes	
 (clients,	
 here)	
 that	
 will	

access	
 an	
 OST	

1	

romio_lustre_coll_threshold!
Turns	
 off	
 collec/ve	
 buffering	
 when	

transfer	
 sizes	
 are	
 above	
 a	
 certain	

threshold	

0	
 (never)	

mpich_mpiio_hints_display	
 when	
 true	
 a	
 summary	
 of	
 all	
 hints	
 to	
 stderr	

each	
 /me	
 a	
 file	
 is	
 opened	

false!

IOBUF – I/O Buffering Library
•  Optimize I/O performance with minimal effort

•  Asynchronous prefetch
•  Write back caching
•  stdin, stdout, stderr disabled by default

•  No code changes needed
•  Load module
•  Recompile & relink the code

•  Ideal for sequential read or write operations

Applica/on	

IOBUF	

Linux	
 IO	
 infrastructure	

File	
 Systems	
 /	
 Lustre	

IOBUF – I/O Buffering Library

•  Globally (dis)enable by (un)setting IOBUF_PARAMS
•  Fine grained control

•  Control buffer size, count, synchronicity, prefetch
•  Disable iobuf per file

•  Some calls in C, C++ can be enabled using iobuf.h,
use the compiler macro, USE_IOBUF_MACROS

export
IOBUF_PARAMS='*.in:count=4:size=32M,*.out:count=8:size=

64M:preflush=1'

IOBUF – MPI-IO Sample Output

I/O LIBRARIES
HDF5 & PnetCDF

Benefits of I/O Libraries
•  There are many benefits to using higher level I/O libraries

•  They provide a well-defined, base structure for files that is self-
describing and organizes data intuitively

•  Has an API that represents data in a way similar to a simulation
•  Often built on MPI-IO and handle (some) optimization
•  Easy serialization/deserialization of user data structures
•  Portable

•  Currently supported: (Parallel) HDF5, (Parallel) netCDF,
Adios

I/O Libraries – Some Details
•  Parallel netCDF

•  Derived from and compatible with the original “Network Common
Data Format”

•  Offers collective I/O on single files
•  Variables are typed, multidimensional, and (with files) may have

associated attributes
•  Record variables – “unlimited” dimensions allowed if dimension

size is unknown
•  Parallel HDF5

•  “Hierarchical Data Format” with data model similar to PnetCDF,
and also uses collective I/O calls

•  Can use compression (only in serial I/O mode)
•  Can perform data reordering
•  Very flexible
•  Allows some fine tuning, e.g. enabling buffering

Example Use on Blue Waters
•  Under PrgEnv-cray:

$> module avail hdf5
----------------------- /opt/cray/modulefiles -----------------------
hdf5/1.8.7 hdf5/1.8.8(default) hdf5-parallel/1.8.7 hdf5-parallel/1.8.8
(default)

$> module load hd5-parallel

$> cc Dataset.c

$> qsub -I -lnodes=1:ppn=16 -lwalltime=00:30:00
$> aprun –n 2 ./a.out
Application 1293960 resources: utime ~0s, stime ~0s

$> ls *.h5
SDS.h5

•  Dataset.c is a test code from the HDF Group:
 http://www.hdfgroup.org/ftp/HDF5/examples/parallel/Dataset.c

I/O UTILITIES
Darshan

Example I/O Utility: Darshan

•  We will support tools for I/O Characterization
•  Sheds light on the intricacies of an application’s I/O
•  Useful for application I/O debugging
•  Pinpointing causes of extremes
•  Analyzing/tuning hardware for optimizations

•  Darshan was developed at Argonne, and
•  is “a scalable HPC I/O characterization tool…

designed to capture an accurate picture of application
I/O behavior… with minimum overhead”

•  http://www.mcs.anl.gov/research/projects/darshan/

Darshan Specifics

•  Darshan collects per-process statistics (organized by
file)
•  Counts I/O operations, e.g. unaligned and sequential

accesses
•  Times for file operations, e.g. opens and writes
•  Accumulates read/write bandwidth info
•  Creates data for simple visual representation

•  More
•  Requires no code modification (only re-linking)
•  Small memory footprint
•  Includes a job summary tool

Summary Tool Example Output

mpi-io-test (6/7/2012) 1 of 3

jobid: 3406 uid: 1000 nprocs: 8 runtime: 1 seconds

 0

 20

 40

 60

 80

 100

PO
SIX

M
PI-IO

P
e
rc

e
n
ta

g
e
 o

f
ru

n
 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

 0

 5

 10

 15

 20

 25

 30

 35

Read Write Open Stat Seek Mmap Fsync

O
p
s

(T
o
ta

l,
A

ll
P

ro
ce

ss
e
s)

I/O Operation Counts

POSIX
MPI-IO Indep.

MPI-IO Coll.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o
u
n
t
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Sizes

Read Write

 0

 1

 2

 3

 4

 5

 6

 7

 8

Read Write

O
p
s

(T
o
ta

l,
A

ll
P

ro
cs

)

I/O Pattern

Total
Sequential

Consecutive

Most Common Access Sizes

access size count

16777216 16

File Count Summary

type number of files avg. size max size

total opened 1 128M 128M

read-only files 0 0 0

write-only files 0 0 0

read/write files 1 128M 128M

created files 0 0 0

./mpi-io-test

mpi-io-test (6/7/2012) 1 of 3

jobid: 3406 uid: 1000 nprocs: 8 runtime: 1 seconds

 0

 20

 40

 60

 80

 100

PO
SIX

M
PI-IO

P
e

rc
e

n
ta

g
e

 o
f

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

 0

 5

 10

 15

 20

 25

 30

 35

Read Write Open Stat Seek Mmap Fsync

O
p

s
(T

o
ta

l,
A

ll
P

ro
ce

ss
e

s)

I/O Operation Counts

POSIX
MPI-IO Indep.

MPI-IO Coll.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o

u
n

t
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Sizes

Read Write

 0

 1

 2

 3

 4

 5

 6

 7

 8

Read Write

O
p

s
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Pattern

Total
Sequential

Consecutive

Most Common Access Sizes

access size count

16777216 16

File Count Summary

type number of files avg. size max size

total opened 1 128M 128M

read-only files 0 0 0

write-only files 0 0 0

read/write files 1 128M 128M

created files 0 0 0

./mpi-io-test

mpi-io-test (6/7/2012) 1 of 3

jobid: 3406 uid: 1000 nprocs: 8 runtime: 1 seconds

 0

 20

 40

 60

 80

 100

PO
SIX

M
PI-IO

P
e

rc
e

n
ta

g
e

 o
f

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

 0

 5

 10

 15

 20

 25

 30

 35

Read Write Open Stat Seek Mmap Fsync

O
p

s
(T

o
ta

l,
A

ll
P

ro
ce

ss
e

s)

I/O Operation Counts

POSIX
MPI-IO Indep.

MPI-IO Coll.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o

u
n

t
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Sizes

Read Write

 0

 1

 2

 3

 4

 5

 6

 7

 8

Read Write

O
p

s
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Pattern

Total
Sequential

Consecutive

Most Common Access Sizes

access size count

16777216 16

File Count Summary

type number of files avg. size max size

total opened 1 128M 128M

read-only files 0 0 0

write-only files 0 0 0

read/write files 1 128M 128M

created files 0 0 0

./mpi-io-test

mpi-io-test (6/7/2012) 1 of 3

jobid: 3406 uid: 1000 nprocs: 8 runtime: 1 seconds

 0

 20

 40

 60

 80

 100

PO
SIX

M
PI-IO

P
e

rc
e

n
ta

g
e

 o
f

ru
n

 t
im

e

Average I/O cost per process

Read
Write

Metadata
Other (including application compute)

 0

 5

 10

 15

 20

 25

 30

 35

Read Write Open Stat Seek Mmap Fsync

O
p

s
(T

o
ta

l,
A

ll
P

ro
ce

ss
e

s)

I/O Operation Counts

POSIX
MPI-IO Indep.

MPI-IO Coll.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0-100

101-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

1G
+

C
o

u
n

t
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Sizes

Read Write

 0

 1

 2

 3

 4

 5

 6

 7

 8

Read Write

O
p

s
(T

o
ta

l,
A

ll
P

ro
cs

)

I/O Pattern

Total
Sequential

Consecutive

Most Common Access Sizes

access size count

16777216 16

File Count Summary

type number of files avg. size max size

total opened 1 128M 128M

read-only files 0 0 0

write-only files 0 0 0

read/write files 1 128M 128M

created files 0 0 0

./mpi-io-test

mpi-io-test (6/7/2012) 2 of 3

 0

 2

 4

 6

 8

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01

M
P

I
ra

n
k

hours:minutes:seconds

Timespan from first to last read access on independent files

 0

 2

 4

 6

 8

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01

M
P

I
ra

n
k

hours:minutes:seconds

Timespan from first to last write access on independent files

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01

A
ll

p
ro

ce
ss

e
s

hours:minutes:seconds

Timespan from first to last access on files shared by all processes

read
write

Average I/O per process

Cumulative time spent in

I/O functions (seconds)

Amount of I/O (MB)

Independent reads 0.000000 0.000000

Independent writes 0.000000 0.000000

Independent metadata 0.000000 N/A

Shared reads 0.023298 16.000000

Shared writes 0.049300 16.000000

Shared metadata 0.000019 N/A

Data Transfer Per Filesystem

File System
Write Read

MiB Ratio MiB Ratio

/ 128.00000 1.00000 128.00000 1.00000

./mpi-io-test

mpi-io-test (6/7/2012) 3 of 3

Variance in Shared Files

File Processes Fastest Slowest σ
Suffix Rank Time Bytes Rank Time Bytes Time Bytes

...test.out 8 0 0.041998 32M 2 0.111384 32M 0.0246 0

./mpi-io-test

THE SUMMARY
Two slides left.

Good Practices, Generally
•  Opening a file for writing/appending is expensive, so:

•  If possible, open files as read-only
•  Avoid large numbers of small writes
while(forever){ open(“myfile”);
 write(a_byte); close(“myfile”); }

•  Be gentle with metadata (or suffer its wrath)
•  limit the number of files in a single directory

•  Instead opt for hierarchical directory structure
•  ls contacts the metadata server, ls –l communicates with every OST

assigned to a file (for all files)
•  Avoid wildcards: rm –rf *, expanding them is expensive over many files
•  It may even be more efficient to pass medata through MPI than have all

processes hit the MDS (calling stat)
•  Avoid updating last access time for read-only operations (NO_ATIME)

Lessons Learned
•  Avoid unaligned I/O and OST contention!
•  Use large data transfers

•  Don’t expect performance with non-contiguous, small data
transfers. Use buffering when possible

•  Consider using MPI-IO and other I/O libraries
•  Portable data formats vs. unformatted files

•  Use system specific hints and optimizations
•  Exploit parallelism using striping

•  Focus on stripe alignment, avoiding lock contention
•  Move away from one-file-per-process model

•  Use aggregation and reduce number of output files
•  Talk to your POC about profiling and optimizing I/O

The End

62 Presentation Title

Thanks to: Victor Anisimov, Galen Arnold, Kalyana
Chadalavada, Tom Cortese, Manisha Gajbe, Rob
Sisneros

