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  of	
  Cores	
   16	
  Core	
  modules	
  
(2	
  AMD	
  6276	
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  @2.3	
  GHz)	
  

Peak	
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   313	
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   4	
  GB	
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64	
  GB	
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  node	
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(Peak)	
  

102.4	
  GB/sec	
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•  Each processor die is 
composed of 4 core modules 

•  The 4 core modules share a 
memory controller and 8 MB 
L3 data cache on one die 

•  Two die are packaged on a 
multi-chip module to form a 
G34-socket Interlagos 
processor 

•  Package contains 
•  8 core modules 
•  16 MB L3 Cache 
•  4 DDR3 1600 memory 

channels 

AMD 6276 Interlagos Processor 
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Interlagos 

4 CPU Architecture 

Shared L3 C
ache 

NB/HT Links Memory Controller 

•  Four Core Modules per die 
•  Two Integer cores and one 

FP core per Core Module 
•  OS treats each Interlagos as 

16 cores (i.e. 32 per XE6 
node) 

•  Each die shares L3 cache 

1	
  of	
  2	
  dies	
  



Compiler Options - Topics 

•  Available (Supported) Compilers 
•  Where to Start 
•  Compiler Choices – Relative Strength 
•  Compiler Options focused on 

•  Optimization 
•  Debugging  
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Available Compilers 

•  Cray Compilers (Cray Compiling Environment (CCE)) 
•  Provided additonal support for Fortran 2003, Co-arrays, UPC, 

PGAS  
•  GNU Compiler Collection (GCC) 
•  Portland Group Inc (PGI) Compilers 
•  All provide Fortran, C, C++, OpenMP support 
•  UPC, PGAS, (limited) OpenACC support (Cray, PGI) 
•  So which compiler do I choose? 

•  Experiment with various compilers 
•  Work with your BW POC 
•  Mixing libraries created by different compilers may cause issues 
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Where to Start 

•  Unless you have a very good reason, always use compiler 
wrappers 
•  “module load PrgEnv-[cray,gnu,pgi]”  
•  Compiler wrappers: ftn, cc, CC 
•  Additional libraries are automatically linked in 
•  Optimization targets automatically set 

•  For most applications, using default settings work very 
well 

•  The OpenMP threaded BLAS/LAPACK libraries are used 
•  The serial version is used if “OMP_NUM_THREADS” is not 

set or set to 1 
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Use the Best Compiler 

•  The best compiler may not be the same for every 
application. 

•  Work with BW staff to compare compilers 
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Compiler Choices – Relative Strength 
•  CCE – Outstanding Fortran, Very good C and okay C++  

•  Very good vectorization 
•  Very good Fortran language support; only real choice for 

coarrays 
•  C support is very good, with UPC support 
•  Very good scalar optimization and automatic parallelization 
•  Clean implementation of OpenMP 3.0 with tasks 
•  Cleanest integration with other Cray tools (Performance tools, 

debuggers, upcoming productivity tools) 
•  No inline assembly support 
•  Excellent support from Cray (bugs, issues, performance etc) 
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Compiler Choices – Relative Strength 
•  PGI – Very good Fortran, okay C and C++ 

•  Good vectorization 
•  Good functional correctness with optimization 

enabled 
•  Good manual and automatic prefetch capabilities 
•  Company focused on HPC market 
•  Excellent working relationship with Cray, good bug 

responsiveness 
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Compiler Choices – Relative Strength 
•  GNU – so-so Fortran, outstanding C and C++ (If 

you ignore vectorization) 
•  Obviously, the best gcc compatibility 
•  Scalable optimizer was recently rewritten and is 

very good 
•  Vectiorization capabilities focus mostly on inline 

assembly 
•  Few releases have been incompatible with each 

other and require recompilation of modules (4.3, 
4.4, 4.5) 
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Recommended CCE Compilation Options 
•  Use default optimization levels 

•  It’s the equivalent of most other compilers –O3 or –fast 
•  Use –O3, fp3 (or –O3 –hfp3 or some variation) 

•  -O3 gives slightly more than –O2 
•  -hfp3 gives a lot more floating point optimizations, esp 32 bit 

•  If an application is intolerant of floating point reassociation, try lower 
hfp number, try hfp1 first, only hfp0 if absolutely necessary 

•  Might be needed for tests that require strict IEEE conformance 
•  Or applications that have validated results from diffferent compiler 

•  Do not suggest using -Oipa5, -Oaggress and so on; higher 
numbers are not always correlated with better performance 

•  Compiler feedback : -rm (fortran), -hlist=m ( C ) 
•  If don’t want OpenMP : -xomp or –Othread0 or –hnoomp 
•  Manpages :  crayftn, craycc, crayCC 
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Loopmark : Compiler Feedback (CCE) 
•  Compiler can generate an filename.lst file 
•  Contains annotated listing of your source code with letter indicating 

important optimizations 
•  Loopmark legend 

13 Compiler Optimization 

Primary Loop Type  
---------- ------- ------  
A - Pattern matched  
 
C – Collapsed  
D – Deleted 
E – Cloned  
G – Accelerated 
I - Inlined                    
M - Multithreaded         
V – Vectorized  

Modifiers 
------------- 
a - atomic memory operation 
b – blocked 
c - conditional and/or computed 
     
f – fused 
g – partitioned 
i – interchanged 
m – partitioned 
n - non-blocking remote transfer 
p – partial 
r – unrolled 
s – shortloop 
w - unwound 



Starting Point for PGI Compilers 
•  Suggested Option : -fast 
•  Interprocedural analysis allows the compiler to perform 

whole program optimizations : –Mipa=fast(,safe) 
•  If you can be flexible with precision, also try –Mfprelaxed 
•  Option –Msmartalloc, calls the subroutine mallopt in the 

main routine, can have a dramatic impact on the 
performance of program that uses dynamic allocation of 
memory 

•  Compiler feedback : -Minfo=all, -Mneginfo 
•  Manpages : pgf90, pgcc, pgCC 
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PGI Compiler Flags 

•  -default64 : Fortran driver option for –i8 and –r8 
•  -i8, -r8 : Treats INTEGER and REAL variables in 

Fortran as 8 bytes (use ftn –default64 option to 
link the right libraries 

•  -byteswapio : Reads big endian files in fortran 
•  -Mnomain : Uses ftn driver to link programs with 

the main program (written in C or C++) and one 
or more subroutines (written in fortran) 

15 Compiler Optimization 



PGI Compiler Flags 
•  It is possible to disable optimizations included with –fast, 

for example –fast –Mnolre enables –fast and then 
disables loop redundant optimizations 

•  -Mconcur, -mprof=mpi, -Mmpi and –Mscalapack are no 
more supported 

•  Fortran interfaces can be called from C program by 
inserting an underscore to the respective name 

•  Pass argument by reference rather than by value 
•  For example to call dgetrf() 
•  Dgetrf_(&uplo, &M, &n, ……); 
•  To debug an optimized code, the –opt flag will insert 

debugging information without disabling optimizations 
16 Compiler Optimization 



PGI Compiler Flags 
•  Some compiler options mat affect both performance and 

accuracy 
•  Lower accuracy is often higher performance, but it also 

able to enforce accuracy 
•  -Kieee : all floating point (FP) math strictly conforms to 

IEEE , off by default 
•  -Ktrap : Turns processor trapping of FP exceptions 
•  -Mdaz : Treat all denormalized numbers as zeros 
•  Mflushz : Set SSE to flush-to-zero (on with –fast) 
•  -Mfprelaxed : allow to use relaxed ( reduced) precision to 

speed up some floating point optimizations 
•  Some compilers turn this on by default, PGI chooses to favor 

accuracy to speed, by default 
17 Compiler Optimization 



Starting Point for GNU Compilers 
•  -O3 –ffast-math –funroll-loops 
•  Compiler feedback : -ftree-vectorizer-verbose=2 
•  Manpages : gfortran, gcc, g++ 

18 Compiler Optimization 



Numerical Libraries Overview 

•  Many commonly-used packages are available on 
Blue Waters 

•  Typically can link with most or all combinations of 
compiler, language, and parallel programming model 

•  Use the “module” command to select a particular 
version 

•  Will try to accommodate special installation requests 
(can’t install “Everything under the Sun” due to 
scalibility and other considerations) 

19 Performance Libraries 



Cray Scientific Library (libsci) 

•  Contains optimized versions of several popular 
scientific software routines 

•  Available by default; can change versions with 
“module avail” and “module load 
xt‑libsci[/version]” 
•  BLAS, BLACS 
•  LAPACK, ScaLAPACK 
•  FFT, FFTW 

•  Unique to Cray (affects portability) 
•  CRAFFT, CASE, IRT 

20 Performance Libraries 



PETSc (Argonne National Laboratory) 
•  Programmable, Extensible Toolkit for Scientific 

Computing 
•  Widely-used collection of many different types of linear 

and non-linear solvers 
•  Actively under development; very responsive team 
•  Can also interface with numerous optional external 

packages (e.g., SLEPC, HYPRE, ParMETIS, …) 
•  Optimized version installed by Cray, along with many 

external packages 
•  Use “module load petsc[/version]” 

21 Performance Libraries 



Other Numerical Libraries 

•  ACML (AMD Core Math Library) 
•  BLAS, LAPACK, FFT, Random Number Generators 

•  Trilinos (from Sandia National Laboratories) 
•  Somewhat similar to PETSc, interfaces to a large 

collection of preconditioners, solvers, and other 
computational tools 

•  GSL (GNU Scientific Library) 
•  Collection of numerous computational solvers and tools for 

C and C++ programs 
•  All available using “module load” 

22 Performance Libraries 



Optimization options 
•  Hybrid programming model (MPI+OpenMP, et al) is usually better 

•  Try 1, 2, 4, 16, 32 tasks per node 

 For 1024 nodes: 

 32 tasks+threads/node: 

 aprun –n 4096 –N 4 –d 8 ./myprog 

 16 tasks+threads/node: 

 aprun –n 4096 –N 4 –d 4 \ 

   –cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30 \ 
     ./myprog 

•  Try using –r 1 to reserve a core for the OS 

 aprun –n 4096 –N 4 –d 7 –r 1 \ 
     –cc 0-6:8-14:16-22:24-30 ./myprog 

•  Test different compilers, flags 

•  Use accelerators 
 

23 Presentation Title 



This Talk 

Applica/on…	
  

I/O	
  Library	
  

HDF5	
  

PnetCDF	
  

Adios	
  

I/O	
  
Middleware	
  

MPI-­‐IO	
  

Damaris	
  

Parallel	
  File	
  
System	
   Lustre	
  

Scien/st…	
  

U/li/es	
  

Darshan	
   Blue	
  Waters	
  

IOBUF	
  



Common I/O Usage 

•  Checkpoint files 
•  Write-close 
•  Size varies 
•  Must be written to disk 

•  Log / history / state files 
•  Simple appends 
•  Small writes (~kb - ~MB) 
•  Can be buffered 

•  Write-read not very common 

•  Op/mize	
  for	
  
write	
  

•  Synchronous	
  
write	
  

•  Op/mize	
  for	
  write	
  
•  Asynchronous	
  
write	
  

•  Explicit	
  buffer	
  
management	
  or	
  

•  Use	
  a	
  library	
  



Available File Systems 

•  home 
•  2.2 PB 
•  1TB quota 

•  project 
•  2.2 PB 
•  3TB quota 

•  scratch 
•  22 PB 
•  500 TB quota 

•  Three separate file systems 
•  Three separate metadata servers 
•  User operations in home won’t 

interfere with application IO 
•  Project space controlled by the PI 



Application I/O: Big Picture Considerations 

•  Maximize both client I/O and communication 
bandwidth (without breaking things) 

•  Minimize management of an unnecessarily large 
number of files 

•  Minimize costly post-processing 
•  Exploit parallelism in the file system 
•  Maintain portability 



Large Scale I/O in Practice 
•  Serial I/O is limited by both the I/O bandwidth of a single 

process as well as that of a single OST 
•  Two ways to increase bandwidth: 
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File-Per-Process 
•  Each process performs I/O on its own file 

•  Advantages 
•  Straightforward implementation  
•  Typically leads to reasonable bandwidth quickly 

•  Disadvantages 
•  Limited by single process 
•  Difficulty in managing a large number of files 
•  Likely requires post processing to acquire useful data 
•  Can be taxing on the file system metadata and ruin everybody’s day 
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Shared-File 
•  There is one, large file shared among all processors which 

access the file concurrently 

•  Advantages 
•  Results in easily managed data that is useful with minimal 

preprocessing 
•  Disadvantages 

•  Likely slower than file-per-process, if not used properly 
•  Additional (one-time!) programing investment 
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Lustre File System: Striping 

•  File striping: single files are distributed across a 
series of OSTs   
•  File size can grow to the aggregate size of available 

OSTs (rather than a single disk) 
•  Accessing multiple OSTs concurrently increases I/O 

bandwidth 
 
 

Logical 
Physical 



Performance Impact: Configuring File Striping 
•  lfs is the Lustre utility for viewing/setting file striping info 

•  Stripe count – the number of OSTs across which the file can be striped 
•  Stripe size – the size of the blocks that a file will be broken into 
•  Stripe offset – the ID of an OST for Lustre to start with, when deciding 

which OSTs a file will be striped across  
•  Configurations should focus on stripe count/size  
•  Blue Waters defaults: 
   $> touch test 
   $> lfs getstripe test 
   test 
   lmm_stripe_count:   1 
   lmm_stripe_size:    1048576 
   lmm_stripe_offset:  708 
      obdidx         objid         objid         group 
         708       2161316      0x20faa4             0 

 
 



Setting Striping Patterns 
$> lfs setstripe -c 5 -s 32m test 
$> lfs getstripe test 
test 
lmm_stripe_count:   5 
lmm_stripe_size:    33554432 
lmm_stripe_offset:  1259 
   obdidx         objid         objid         group 
     1259       2162557      0x20ff7d             0 
     1403       2165796      0x210c24             0 
      955       2163063      0x210177             0 
     1139       2161496      0x20fb58             0 
      699       2161171      0x20fa13             0 

•  Note: a file’s striping pattern is permanent, and set upon creation 
•  lfs setstripe creates a new, 0 byte file 
•  The striping pattern can be changed for a directory; every new file or directory 

created within will inherit its striping pattern 
•  Simple API available for configuring striping – portable to other Lustre systems 



Striping Case Study 

•  Reading 1 TB input file using 2048 cores 

•  Code is now CPU bound instead of I/O bound 
•  Optimization “effort”: lfs setstripe –c 64 

Func1on	
   Stripe	
  Count	
  =	
  1	
   Stripe	
  Count	
  =	
  64	
   Improvement	
  

Total	
   4551.620s	
   268.209s	
   94.1%	
  

loadKernel	
   4296.118s	
   85.331s	
   98.0%	
  

loadDamp	
   33.767s	
   6.144s	
   81.8%	
  

loadDamp_bycol	
   30.085s	
   5.712s	
   81.0%	
  



Striping, and You 
•  When to use the default stripe count of 1 

•  Serial I/O or small files 
•  Inefficient use of bandwidth + overhead of using multiple OSTs 

will degrade performance 
•  File-per-process I/O Pattern  

•  Each core interacting with a single OST reduces network costs 
of hitting OSTs (which can eat your lunch at large scales) 

•  Stripe size is unlikely to vary performance unless 
unreasonably small/large 
•  Err on the side of small 

•  This helps keep stripes aligned, or within single OSTs 
•  Can lessen OST traffic 

•  Default stripe size should be adequate 



•  Large shared files: 
•  Processes ideally access exclusive file regions 
•  Stripe size 

•  Application dependent 
•  Should maximize stripe alignment (localize a process to an OST to reduce 

contention and connection overhead) 
•  Stripe count  

•  Should equal the number of processes performing I/O to maximize I/O 
bandwidth 

•  Blue Waters contains 1440 OSTs, the maximum possible for file stripe count is 
currently 160 (likely to increase soon pending a software update) 

   $> lfs osts 
   OBDS 
   0: snx11001-OST0000_UUID ACTIVE 
   1: snx11001-OST0001_UUID ACTIVE 
    …… 
1438: snx11003-OST059e_UUID ACTIVE 
1439: snx11003-OST059f_UUID ACTIVE 
 



And the Winner is… Neither? 
•  Both patterns increase bandwidth through the addition of I/O 

processes 
•  There are a limited number of OSTs to stripe a file across  
•  The likelihood of OST contention grows with the ratio of I/O 

processes to OSTs 
•  Eventually, the benefit of another I/O process is offset by added 

OST traffic 
•  Both routinely use all processes to perform I/O 

•  A small subset of a node’s cores can consume a node’s I/O 
bandwidth 

•  This is an inefficient use of resources 
•  The answer?  It depends… but, 

•  Think aggregation, a la file-per-node 



I/O Delegates 
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•  Advantages 
•  More control - customize per job size 

•  Ex: One file per node, one file per OST 
•  Disadvantages 

•  Additional (one-time!) programing investment 



I/O MIDDLEWARE 
MPI-IO & IOBUF 



Why use I/O Middleware? 

•  Derived data types 
•  Easy to work with shared files 
•  Derived types + shared files 

•  Data is now a series of objects, rather than a 
number of files 

•  On restart from checkpoint, the number of 
processors need not match the number of files 

•  Easy read-write of non-contiguous data 
•  Optimizations possible with little effort 



I/O Middleware: MPI-IO 
•  MPI standard’s implementation of collective I/O (shared-file) 

•  A file is opened by a group of processes, partitioned among them, and I/O 
calls are collective among all processes in the group 

•  Files are composed of native MPI data types  
•  Non-collective I/O is also possible 

•  Uses collective buffering to consolidate I/O requests 
•  All data is transferred to a subset of processes and aggregated  
•  Use MPICH_MPIIO_CB_ALIGN=2 to enable Cray’s collective buffering 

algorithm 
•  automatic Lustre stripes alignment & minimize lock contention 
•  May not be beneficial when writing small data segments 
•  Verified to deliver 25% improvement on BlueWaters for a 1000 rank job 

•  Use MPICH_MPIIO_XSTATS [0, 1, 2] to obtain MPI-IO statistics  
•  I/O optimizations in high level libraries are often implemented here – 

be sure any monkeying is careful monkeying 



Collective Buffering (1) 

•  Exchange metadata 



Collective Buffering (2) 

•  Copy user/application data 



Collective Buffering (3) 

•  Aggregators write to disk 



•  Hints are specified in application code [MPI_Info_set()] or 
as environment variables (MPICH_MPIIO_HINTS) 

•  Collective buffering hints 
 

 

 

 

Tuning MPI-IO: CB Hints 

Hint	
   Descrip1on	
   Default	
  
cb_buffer_size! set	
  the	
  maximum	
  size	
  of	
  a	
  single	
  I/O	
  opera/on	
  	
   4MB	
  

cb_nodes! set	
  maximum	
  number	
  of	
  aggregators	
   stripe	
  count	
  of	
  file	
  

romio_cb_read	
  
romio_cb_write	
  

enable	
  or	
  disable	
  collec/ve	
  buffering	
   automa/c	
  

romio_no_indep_rw	
   •  if	
  true,	
  MPI-­‐IO	
  knows	
  all	
  I/O	
  is	
  collec/ve	
  
•  Only	
  aggregators	
  will	
  open	
  files	
  

false!

cb_config_list	
   a	
  list	
  of	
  independent	
  configura/ons	
  for	
  nodes	
   N/A	
  

striping_factor	
   Specifies	
  the	
  number	
  of	
  Lustre	
  stripes	
   File	
  system	
  

striping_unit	
   Specifies	
  the	
  size	
  of	
  the	
  Lustre	
  stripe	
   File	
  system	
  



Other Useful Hints 

Hint	
   Descrip1on	
   Default	
  

romio_lustre_co_ratio!
tell	
  MPI-­‐IO	
  the	
  maximum	
  number	
  of	
  
processes	
  (clients,	
  here)	
  that	
  will	
  
access	
  an	
  OST	
  

1	
  

romio_lustre_coll_threshold!
Turns	
  off	
  collec/ve	
  buffering	
  when	
  
transfer	
  sizes	
  are	
  above	
  a	
  certain	
  
threshold	
  

0	
  (never)	
  

mpich_mpiio_hints_display	
   when	
  true	
  a	
  summary	
  of	
  all	
  hints	
  to	
  stderr	
  
each	
  /me	
  a	
  file	
  is	
  opened	
  

false!



IOBUF – I/O Buffering Library 
•  Optimize I/O performance with minimal effort 

•  Asynchronous prefetch 
•  Write back caching 
•  stdin, stdout, stderr disabled by default 

•  No code changes needed 
•  Load module 
•  Recompile & relink the code 

•  Ideal for sequential read or write operations 

Applica/on	
  
IOBUF	
  

Linux	
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IOBUF – I/O Buffering Library 

•  Globally (dis)enable by (un)setting IOBUF_PARAMS 
•  Fine grained control 

•  Control buffer size, count, synchronicity, prefetch 
•  Disable iobuf per file 

•  Some calls in C, C++ can be enabled using iobuf.h, 
use the compiler macro, USE_IOBUF_MACROS 

export 
IOBUF_PARAMS='*.in:count=4:size=32M,*.out:count=8:size=

64M:preflush=1' 



IOBUF – MPI-IO Sample Output 



I/O LIBRARIES 
HDF5 & PnetCDF 



Benefits of I/O Libraries 
•  There are many benefits to using higher level I/O libraries 

•  They provide a well-defined, base structure for files that is self-
describing and organizes data intuitively 

•  Has an API that represents data in a way similar to a simulation 
•  Often built on MPI-IO and handle (some) optimization 
•  Easy serialization/deserialization of user data structures 
•  Portable 

•  Currently supported: (Parallel) HDF5, (Parallel) netCDF, 
Adios 



I/O Libraries – Some Details 
•  Parallel netCDF 

•  Derived from and compatible with the original “Network Common 
Data Format”  

•  Offers collective I/O on single files 
•  Variables are typed, multidimensional, and (with files) may have 

associated attributes 
•  Record variables – “unlimited” dimensions allowed if dimension 

size is unknown 
•  Parallel HDF5 

•  “Hierarchical Data Format” with data model similar to PnetCDF, 
and also uses collective I/O calls 

•  Can use compression (only in serial I/O mode) 
•  Can perform data reordering 
•  Very flexible 
•  Allows some fine tuning, e.g. enabling buffering 



Example Use on Blue Waters 
•  Under PrgEnv-cray: 
 
$> module avail hdf5 
----------------------- /opt/cray/modulefiles ----------------------- 
hdf5/1.8.7   hdf5/1.8.8(default)   hdf5-parallel/1.8.7   hdf5-parallel/1.8.8
(default) 
 
$> module load hd5-parallel 
 
$> cc Dataset.c  
 
$> qsub -I -lnodes=1:ppn=16 -lwalltime=00:30:00 
$> aprun –n 2 ./a.out 
Application 1293960 resources: utime ~0s, stime ~0s 
 
$> ls *.h5 
SDS.h5 
 
•  Dataset.c is a test code from the HDF Group: 
     http://www.hdfgroup.org/ftp/HDF5/examples/parallel/Dataset.c 



I/O UTILITIES 
Darshan 



Example I/O Utility: Darshan 

•  We will support tools for I/O Characterization 
•  Sheds light on the intricacies of an application’s I/O  
•  Useful for application I/O debugging 
•  Pinpointing causes of extremes 
•  Analyzing/tuning hardware for optimizations 

•  Darshan was developed at Argonne, and 
•  is “a scalable HPC I/O characterization tool… 

designed to capture an accurate picture of application 
I/O behavior… with minimum overhead” 

•  http://www.mcs.anl.gov/research/projects/darshan/  



Darshan Specifics 

•  Darshan collects per-process statistics (organized by 
file) 
•  Counts I/O operations, e.g. unaligned and sequential 

accesses 
•  Times for file operations, e.g. opens and writes 
•  Accumulates read/write bandwidth info 
•  Creates data for simple visual representation 

•  More 
•  Requires no code modification (only re-linking) 
•  Small memory footprint 
•  Includes a job summary tool 



Summary Tool Example Output 

mpi-io-test (6/7/2012) 1 of 3

jobid: 3406 uid: 1000 nprocs: 8 runtime: 1 seconds
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write

Average I/O per process

Cumulative time spent in

I/O functions (seconds)

Amount of I/O (MB)

Independent reads 0.000000 0.000000

Independent writes 0.000000 0.000000

Independent metadata 0.000000 N/A

Shared reads 0.023298 16.000000

Shared writes 0.049300 16.000000

Shared metadata 0.000019 N/A

Data Transfer Per Filesystem

File System
Write Read

MiB Ratio MiB Ratio

/ 128.00000 1.00000 128.00000 1.00000
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Variance in Shared Files

File Processes Fastest Slowest σ
Suffix Rank Time Bytes Rank Time Bytes Time Bytes

...test.out 8 0 0.041998 32M 2 0.111384 32M 0.0246 0

./mpi-io-test



THE SUMMARY 
Two slides left. 



Good Practices, Generally 
•  Opening a file for writing/appending is expensive, so: 

•  If possible, open files as read-only 
•  Avoid large numbers of small writes 
while(forever){    open(“myfile”); 
   write(a_byte); close(“myfile”); } 
 

•  Be gentle with metadata (or suffer its wrath) 
•  limit the number of files in a single directory 

•  Instead opt for hierarchical directory structure 
•  ls contacts the metadata server, ls –l communicates with every OST 

assigned to a file (for all files) 
•  Avoid wildcards: rm –rf *, expanding them is expensive over many files 
•  It may even be more efficient to pass medata through MPI than have all 

processes hit the MDS (calling stat) 
•  Avoid updating last access time for read-only operations (NO_ATIME) 



Lessons Learned 
•  Avoid unaligned I/O and OST contention! 
•  Use large data transfers 

•  Don’t expect performance with non-contiguous, small data 
transfers. Use buffering when possible 

•  Consider using MPI-IO and other I/O libraries 
•  Portable data formats vs. unformatted files 

•  Use system specific hints and optimizations 
•  Exploit parallelism using striping 

•  Focus on stripe alignment, avoiding lock contention 
•  Move away from one-file-per-process model 

•  Use aggregation and reduce number of output files 
•  Talk to your POC about profiling and optimizing I/O 



The End 
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